

Our Technologies Realize Your Dreams

One-Way Clutch GXZ type

One-way clutches are compact and high-performance that utilize miniature bearing technology.

They are a mechanical component that is suitable for a wide range of applications including office equipment, control equipment, and various feed mechanisms that utilize functions such as over-running, back-running, and indexing.

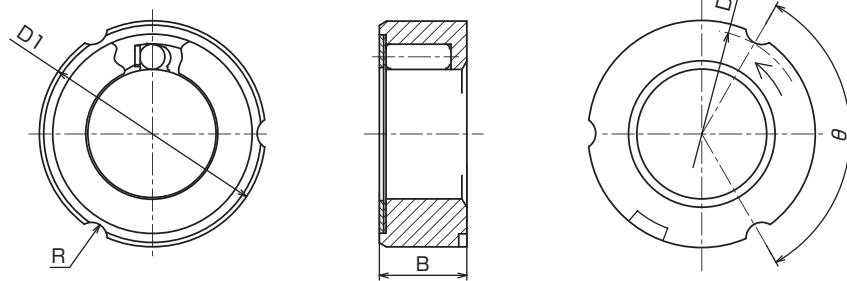
Origin Co., Ltd.

01 Specifications for the Standard Models

Naming and auxiliary symbols

OWC GX Z

①


②

③

④

①OWC collective name	②Bore(Shaft size)	③Outside dia.	④Lock direction
OWC=Origin One-Way Clutch	Example • 6=Bore $\phi 6$ • 10=Bore $\phi 10$	Example • 12=Outside dia. $\phi 12$ • 16=Outside dia. $\phi 16$	• R=Locks when the shaft is rotated in the clockwise direction • L=Locks when the shaft is rotated in the counterclockwise direction

Dimensions

Unit=mm

Nominal Number	Dimensions								Specifications		
	Shaft dia. $d_{-0.03}$	Outside dia. $D1_{-0.05}$	Width $B_{+0.05}^{-0.20}$	Groove R $R_{+0.07}^0$	Groove dia. $D2_{-0.05}^{+0.02}$	Quantity of Grooves	Distance between Grooves θ	Quantity of rollers	Free rotating torque m N·m	Backlash deg. at 0.1N·m	Rated torque N·m
OWC 307GX LZ	3 _{-0.02}	7.2	5.4	0.6	6.6	4	90°	4	< 2	< 4	0.13
OWC 307GXRZ											
OWC 408GX LZ	4	8	6	0.6	7.4	4	90°	4	< 3	< 4	0.15
OWC 408GXRZ											
OWC 410GX LZ	4	10	5.4	1	9	2	180°	4	< 3	< 3.5	0.3
OWC 410GXRZ											
OWC 511GX LZ	5	11	5.4	1	10	3	120°	6	< 3	< 3	0.6
OWC 511GXRZ											
OWC 610GX LZ	6	10.2	8	0.6	9.6	6	60°	6	< 3	< 3	0.54
OWC 610GXRZ											
OWC 612GX LZ	6	12	5.4	1	11	3	120°	6	< 3	< 3	0.8
OWC 612GXRZ											
OWC612GX LZ B=8.4	6	12	8.4	1	11.4	3	120°	6	< 3	< 3	0.8
OWC612GXRZ B=8.4											
OWC 812GX LZ	8	12.2	8	0.6	11.6	6	60°	6	< 3	< 3	0.73
OWC 812GXRZ											
OWC 814GX LZ	8	14	5.4	1	13	3	120°	6	< 3	< 2	1.1
OWC 814GXRZ											
OWC814GX LZ B=8.4	8	14.3	8.4	1	13.8	6	60°	6	< 3	< 3	1.47
OWC814GXRZ B=8.4											
OWC 1016GX LZ	10	16	5.4	1	15	3	120°	6	< 4	< 1	1.5
OWC 1016GXRZ											

Note) 1. The clutch is engaged as the shaft rotates in the direction shown in the arrow (→) on the housing part.

The letters R and L in the nominal number indicates clutched directions, which are clockwise and counterclockwise, respectively.

2. "Rated Torque" is the value of an allowable load torque to guarantee 1 million cycle of the clutch engagement.

02 Features

1. Used under wide range of environmental conditions

A metal constructed component shows superior heat resistance.

2. Miniature-size

A smaller diameter with thin thickness allow saving a space in equipment.

3. Right and Left clutch directions

Two types, R and L, are available. The type "R" clutches in the clockwise direction, whereas the type "L" in the counterclockwise direction.

4. Supply as a single functional component

A shield plate holds the internal parts, which allow supplying products as single functional unit.

5. Easy Assembly into gears and pulleys

It is fairly easy to assemble into resin-based gears and pulleys.

03 Shaft Specifications

The shafts utilized in Origin clutches are recommended to satisfy the following specifications.

Specification head	Specifications of adaptable shaft
Materials	Use steel such as SUM, SUS and SUJ-2.
Hardness	Use a heat-treated shaft.
Surface roughness	Though 0.8S is recommended, this may vary by operation conditions

04 Operation Environment

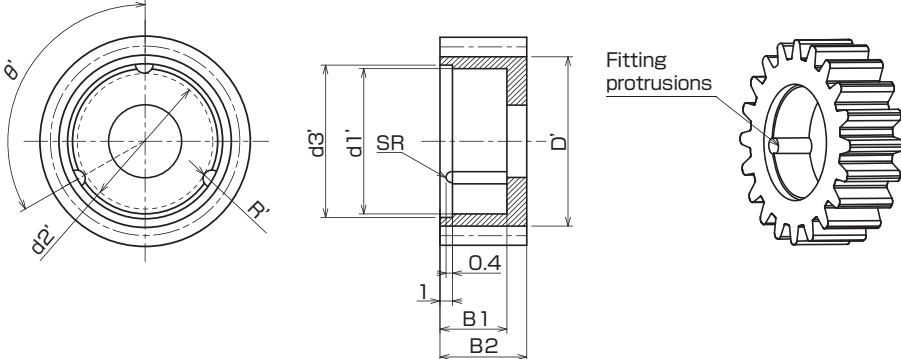
Operation environment	Recommended ranges
Temperature	0 to 60 °C
Humidity	90%RH or less

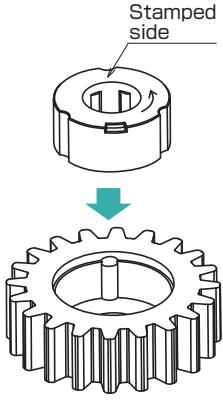
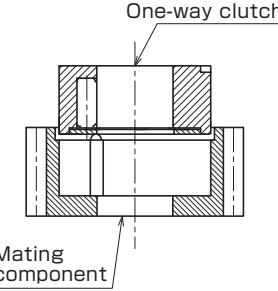
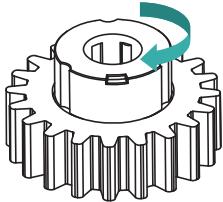
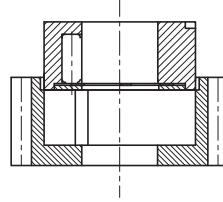
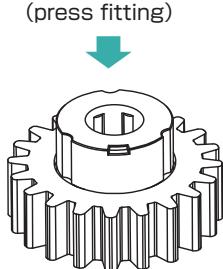
Note) ·Please consult us if you use Origin products under different operation environment not specified above.

·Since the operation environment described here is based on our experiences and testing data, it may not be applied to the products in same way under different circumstances.

For this reason, we do not guarantee that the content of this catalogue will apply to your operation condition exactly in the same way. Please make final decision at one of your company premises before using this product.

05 Cautions


1. Radial load and eccentric load could affect clutch performances. Please confirm these in advance.
2. Since special grease is used inside Origin one-way clutches, it would also affect performances if other lubricants are introduced.
3. Please do not use a plated or black oxidized shaft. The treated surface is come off or peeled and introduced into the clutch mechanism, which would cause a malfunction of the component.
4. Any shocks and/or vibrations could also affect the clutch function.






06 Design Reference

This design reference material describes the basic procedures when designing and fabricating gears, pulleys, etc. from Origin recommended material for use with the OWC-GXZ type.

The specifications may differ from this design material such as in the case of special shapes, the case of using materials other than the recommended material, and the case of special usage environments.

Treat this as a reference for designing.

Stage	Work details																																																																																
Design	<p>Mating component material selection Origin recommended material: "DURACON" M90 by Polyplastics Co. Ltd. or equivalent product</p> <p>Mating component design Origin one-way clutches have grooves in the outer circumference face, and are able to support high rotation torques by having protrusions on the mating component that fit into these grooves during assembly.</p> <p>Mating component List of fitting dimensions - Origin recommended material Unit=mm</p> <table border="1"> <thead> <tr> <th>Model</th> <th>Minimum outer diameter D'</th> <th>Minimum width B2</th> <th>Bore d1 ${}^{+0.15}_{-0.13}$</th> <th>Depth B1 ${}^{+0.15}_{-0.05}$</th> <th>Protrusion radius R ${}^{+0.05}_{-0.05}$</th> <th>Inscribed circle diameter d2 ${}^{+0.05}_{-0.05}$</th> <th>Inner diameter (relief) d3 ${}^{+0.07}_{-0.02}$</th> <th>Number of protrusions N'</th> <th>Protrusion interval $\theta' \pm 30^\circ$</th> </tr> </thead> <tbody> <tr> <td>OWC 307GXZ</td> <td>10</td> <td>6.5</td> <td>7.2</td> <td>5.4</td> <td>0.6</td> <td>6.6</td> <td>7.2</td> <td>4</td> <td>90°</td> </tr> <tr> <td>OWC 408GXZ</td> <td>10</td> <td>7.0</td> <td>8</td> <td>6</td> <td>0.6</td> <td>7.4</td> <td>8</td> <td>4</td> <td>90°</td> </tr> <tr> <td>OWC 410GXZ</td> <td>12</td> <td>6.5</td> <td>10</td> <td>5.4</td> <td>1</td> <td>9</td> <td>10</td> <td>2</td> <td>180°</td> </tr> <tr> <td>OWC 511GXZ</td> <td>13</td> <td>6.5</td> <td>11</td> <td>5.4</td> <td>1</td> <td>10</td> <td>11</td> <td>3</td> <td>120°</td> </tr> <tr> <td>OWC 612GXZ</td> <td>14</td> <td>6.5</td> <td>12</td> <td>5.4</td> <td>1</td> <td>11</td> <td>12</td> <td>3</td> <td>120°</td> </tr> <tr> <td>OWC 814GXZ</td> <td>16</td> <td>6.5</td> <td>14</td> <td>5.4</td> <td>1</td> <td>13</td> <td>14</td> <td>3</td> <td>120°</td> </tr> <tr> <td>OWC1016GXZ</td> <td>18</td> <td>6.5</td> <td>16</td> <td>5.4</td> <td>1</td> <td>15</td> <td>16</td> <td>3</td> <td>120°</td> </tr> </tbody> </table> <p>Cautions</p> <p>1. Material The above design values are for the case of using Origin recommended material. When using other materials, please consult with us as the design may need to be changed (such as changing the press fitting margin).</p> <p>2. Dimensions of outer diameter The one-way clutch and mating component are affixed by press fitting. Since the outer diameter of the mating component may change (increase) due to the press fitting, the design needs to take the changed dimension into account.</p> <p>3. Pull-out strength and retention force in the rotation direction The pull-out strength and the retention force in the rotation direction differ depending on the material, press fitting margin, thickness, and cut-away shape of the mating component. If you are using the Origin recommended material, use a press fitting margin of 0.03 to 0.13 mm (diameter) and thickness of 1.0 mm or more as a rough guide. If you are using another material, you need to set the dimensions after checking them separately.</p> <p>4. High temperature use When used in a high temperature environment, the retaining force (rotation direction and axial direction) decreases due to reduction of the critical stress and stretching of the plastic. When using in high temperatures, always perform plenty of checks.</p> <p>5. Low temperature use When used in a low temperature environment, shrinkage of the plastic occurs. The dimensions need to be set (inner diameter dimension, etc.) such that there is no interference (between the plastic parts and shaft) after shrinkage.</p>	Model	Minimum outer diameter D'	Minimum width B2	Bore d1 ${}^{+0.15}_{-0.13}$	Depth B1 ${}^{+0.15}_{-0.05}$	Protrusion radius R ${}^{+0.05}_{-0.05}$	Inscribed circle diameter d2 ${}^{+0.05}_{-0.05}$	Inner diameter (relief) d3 ${}^{+0.07}_{-0.02}$	Number of protrusions N'	Protrusion interval $\theta' \pm 30^\circ$	OWC 307GXZ	10	6.5	7.2	5.4	0.6	6.6	7.2	4	90°	OWC 408GXZ	10	7.0	8	6	0.6	7.4	8	4	90°	OWC 410GXZ	12	6.5	10	5.4	1	9	10	2	180°	OWC 511GXZ	13	6.5	11	5.4	1	10	11	3	120°	OWC 612GXZ	14	6.5	12	5.4	1	11	12	3	120°	OWC 814GXZ	16	6.5	14	5.4	1	13	14	3	120°	OWC1016GXZ	18	6.5	16	5.4	1	15	16	3	120°
Model	Minimum outer diameter D'	Minimum width B2	Bore d1 ${}^{+0.15}_{-0.13}$	Depth B1 ${}^{+0.15}_{-0.05}$	Protrusion radius R ${}^{+0.05}_{-0.05}$	Inscribed circle diameter d2 ${}^{+0.05}_{-0.05}$	Inner diameter (relief) d3 ${}^{+0.07}_{-0.02}$	Number of protrusions N'	Protrusion interval $\theta' \pm 30^\circ$																																																																								
OWC 307GXZ	10	6.5	7.2	5.4	0.6	6.6	7.2	4	90°																																																																								
OWC 408GXZ	10	7.0	8	6	0.6	7.4	8	4	90°																																																																								
OWC 410GXZ	12	6.5	10	5.4	1	9	10	2	180°																																																																								
OWC 511GXZ	13	6.5	11	5.4	1	10	11	3	120°																																																																								
OWC 612GXZ	14	6.5	12	5.4	1	11	12	3	120°																																																																								
OWC 814GXZ	16	6.5	14	5.4	1	13	14	3	120°																																																																								
OWC1016GXZ	18	6.5	16	5.4	1	15	16	3	120°																																																																								

Stage	Work details		
	Work details	Model diagram	Cross-sectional diagram
Assembly	<p>Preparation of parts and hand press</p> <ul style="list-style-type: none"> · One-way clutch · Mating component · Hand press <p>[Cautions]</p> <ul style="list-style-type: none"> · Perform the work in a clean environment to ensure that foreign matter does not get into the one-way clutch. · During the work, prevent the parts from coming into contact with each other. · During the work, do not use absorbent materials that could remove the lubricant from the one-way clutch. · Take measures against rust such as using procedures for washing hands. · Use a hand press that is able to apply pressure evenly. 		
	<p>One-way clutch set</p> <p>Mount the one-way clutch in the inner diameter (relief hole) of the mating component.</p> <p>[Cautions]</p> <ul style="list-style-type: none"> · Ensure that the centers of the one-way clutch and mating component are not misaligned. · Ensure that the one-way clutch is level. · Ensure that the stamped side of the one-way clutch is facing up. 		
	<p>Phase alignment</p> <p>Rotate the one-way clutch to align the phases of the joining grooves and joining protrusions.</p> <p>[Cautions]</p> <ul style="list-style-type: none"> · Ensure that the centers of the one-way clutch and mating component are not misaligned. · Ensure that the one-way clutch is level. · Ensure you do not cause scratches or defects in the joining protrusions. 		
	<p>Press fitting (applying pressure)</p> <p>Press fit the one-way clutch using the hand press.</p> <p>[Cautions]</p> <ul style="list-style-type: none"> · Do not press fit the one-way clutch if it is not level. · Use a guide shaft or similar. · Press fit using a constant load. · Ensure that the press fitting tool does not scratch the plastic parts. · If you are using metal or other bearings on the same axle, attach a guide shaft or similar to prevent misalignment of the centers. · Press fit basically until the one-way clutch stops at the surface position of the mating component. 		

<http://www.origin.co.jp/eng>

Sales Office

3-10-5, Akatsuki, Oyama-Shi, Tochigi-Ken 329-0211, Japan
Sales Dept, Component Div.

Tel:+81-285-45-1115 Fax:+81-285-45-1236

Osaka Branch Office

Room812, Osaka Ekimae No.4 Bldg., 1-11-4-800, Umeda,
Kita-ku, Osaka 530-0001

Tel:+81-6-6345-8866 Fax:+81-6-6345-8854

**Origin Electric Co., Ltd.
Taiwan Branch Office**

99F, No.110, Fuxing Rd., Taoyuan Dist, Taoyuan City 33066,
Taiwan(R.O.C.)

Tel:+886-3-332-6665 Fax:+886-3-332-8609

**Origin Electric Co., Ltd.
Kowloon Office**

Unit 1706-7, 17/F, Saxon Tower, 7 Cheung Shun Street,
Kln, H.K.

Tel:+852-2314-8811 Fax:+852-2314-8823

Mamada Plant

3-10-5, Akatsuki, Oyama-shi, Tochigi-ken, 329-0211, Japan

Tel:+81-285-45-1111 Fax:+81-285-45-8337

■Subsidiaries

Origin Electric America Co., Ltd.

3848 Carson Street Suite 216, Torrance, CA 90503, USA

Tel:+1-310-540-6750 Fax:+1-310-540-6376

**Origin Precision Machine
(Shanghai) Co., Ltd.**

3/F, No.26 Bldg., No.115 West Fute First Rd. Pilot Free Trade Zone,
Shanghai, 200131 China

Tel:+86-21-5046-2341 Fax:+86-21-5046-2342

The data presented in this catalog are for general application purposes. Do not use this product in such a way that may be harmful to people or exceed its performance.

To avoid accidents and/or failures as well as to ensure safety, do not use this product exceeding the specifications noted in this catalog and ignoring the precautions.